Easy Weight Loss? Intermittent Calorie Reduction Can Lead To Weight Control

Weight Reduction in Automotive Design and Manufacture

Insulin resistance decreased by 22% with the calorie-restricted, low-carbohydrate diet and by 14% with the low-carbohydrate diet which allowed unlimited protein and healthy fats. Insulin resistance decreased by 4% with the standard Mediterranean diet. Other studies on intermittent calorie-restriction — such as, fasting on alternate days or restricting calories two days a week and eating normally five days a week have shown reduction in weight as well as risk for diseases. Dr. Krista A. Varadays team at the University of Illinois at Chicago studied modified alternate-day fasting (ADF) in obese individuals . They consumed 25% of the calories they needed to maintain their weight on the fast day and ad libitum food intake on the following day.
For the original version including any supplementary images or video, visit http://www.examiner.com/article/easy-weight-loss-intermittent-calorie-reduction-can-lead-to-weight-control

Diabetes Drug Won’t Help Obese Kids Keep Off Weight

Vehicle safety & cost implications are also considered along with weight reduction by sector (body structure, chassis, powertrain and interior). The report also includes a detailed section on materials technology and examines the use of advanced steel, aluminium, magnesium, titanium, carbon fibre, plastics, bio-materials and textiles. Recycling and joining technology are also considered. Introduction The effect of policy initiatives Weight saving methods Competition between OEMs Mass reduction and vehicle lifecycle CO2 emissions Barriers to weight reduction DifferentiationSafety Process development Cost considerations The drivers for lightweighting Fuel economy and CO2 emissions The European Union Figure 1: Potential further gains in vehicle efficiency Figure 2: Segment average kerb weights 1990 – 2012 (Europe) Figure 3: US light duty vehicle trends for weight, acceleration, fuel economy, and weight-adjusted fuel economy for model years 1975-2009 (US EPA, 2009 data) Figure 4: Weight reduction in the current weight-based CO2 target system (left) and in a size based system (right) Figure 5: Average CO2 emissions levels for new passenger cars in the EU Figure 6: CO2 emissions for model year 2008 hybrids and their non-hybrid counterparts Figure 7: The cost of fuel efficiency gains through weight reduction compared to other technologies Figure 8: Fiat’s C-Evo Platform Figure 9: North American curb weight forecast Figure 10: The use phase dominates lifecycle vehicle emissions Figure 11: Analysing lifetime greenhouse gas effects Figure 12: Relative CO2 reduction benefits vs. relative cost Figure 13: Drivers and areas of focus for vehicle weight reduction Figure 14: Global mandatory automobile efficiency and GHG standards Figure 15: Methods for reducing CO2 output Figure 16: Impact of vehicle weight on fuel consumption Figure 17: CO2 (g/km) performance and standards in the EU new cars 1994 – 2011 Figure 18: The effect of alternative German proposals for CO2 reduction regulation for Europe Figure 19: US targets for future GHG reductions (% reduction from 2005 levels) Figure 20: Average fuel efficiency 2010 and 2015 targets for gasoline vehicles Figure 21: Global passenger car and light vehicles emission legislation progress 2005 2025 pure garcinia cambogia Figure 22: Comparison of different test regimes for EU, US and Japan Figure 23: Comparison of different fuel efficiency regulations and test regimes Figure 24: US mass of passenger cars 1975 2010 with weight attributed to safety, emissions, comfort and convenience features Figure 25: Relative crash safety of mass reduced SUV and car combinations Figure 26: Weight and cost comparison for automotive components Figure 27: Challenges with materials application Figure 28: Changing cost implications in improving weight performance Figure 29: Average profit per vehicle versus CO2 compliance costs Figure 30: Average price of gasoline in the US 2002 to 2012 Figure 31: Average price of gasoline, diesel and natural gas in the US 2010 to 2012 Figure 32: US Regular Gasoline prices $/gallon, January 2011 to June 2013 Figure 33: Evolution of average Al content of passenger cars in Europe Figure 34: Progress in weight reduction through materials technology Figure 35: A schematic illustrating lifecycle considerations for CO2 equivalent Figure 36: Materials production average greenhouse gas emissions Figure 37: Demand shortfall of aluminium from end-of-life recycling Figure 38: Lower fuel consumption outweighs additional CO2 burden from lightweight material manufacturing Figure 39: Lifecycle system analysis schematic Figure 40: CO2 equivalent output per kWh of electricity produced Figure 41: Global automotive microelectromechanical systems (MEMS) sensors shipments Figure 42: Mini segment average kerb weights 1990 – 2012 (Europe) Figure 43: Lower mid segment average kerb weights 1990 – 2012 (Europe) Figure 44: Upper mid segment average kerb weights 1990 – 2012 (Europe) Figure 45: Luxury segment average kerb weights 1990 – 2012 (Europe) Figure 46: Trends in aluminium use Figure 47: The multi-material vehicle concept applied to the Audi A8 body-in-white Figure 48: Aluminium potential and market penetration in Europe Figure 49: Weight share of modules and their weight increase Figure 50: Changes in steel usage in BIW application Figure 51: Front bumper design for the new Fiat Panda delivers 0.88kg weight saving Figure 52: BIW materials 2006 data and 2015 forecast Figure 53: Front bumper design for the new Alpha Romeo Giulietta delivers 3.1kg weight saving Figure 54: Aluminium/ magnesium lightweight design 6 cylinder engine Figure 55: Engine weight and performance for aluminium and cast iron blocks Figure 56: 1.0L Ecoboost cylinder head with integrated exhaust manifold Figure 57: A lightweight strut with a fibreglass wheel carrier Figure 58: Aston Martin carbon fibre rear spoiler Figure 59: Cost comparison of lightweight vehicle structures Figure 60: Areas for chassis weight reduction Figure 61: Mass reduction in seat design Figure 62: Contribution to weight reduction Figure 63: Laser sintered manifold Figure 64: Implementation of advanced steel alloys over time for Ford models Figure 65: Overall demand for auto steel and other metals and materials Figure 66: Advanced high strength steel developments Figure 67: BIW materials by tensile strength BMW 6 Series Figure 68: Third generation advanced high strength steel development Figure 69: Microstructure of TRIP steel Figure 70: Use of boron steel in BMW’s 6 Series BIW Figure 71: Beyond third generation AHSS; NanoSteel alloys Figure 72: P-group elements in the periodic table Figure 73: Elongation versus alloy percent p-group elements conventional high strength steels Figure 74: Elongation versus alloy percent p-group elements NanoSteel AHSS Figure 75: Life cycle greenhouse gas emissions of the Future Steel Vehicle (FSV) programme vehicles Figure 76: Steel portfolio to technology portfolio flow diagram for the FSV programme Figure 77: Aluminium content per vehicle Figure 78: Primary aluminium production 2012 Figure 79: Global aluminium production including recycling 2012 Figure 80: US forecast market share of steel and aluminium Figure 81: Al growth by segment for Europe and North America Figure 82: Aluminium content by system/ component Figure 83: Aluminium content in 2012 Figure 84: Aluminium and plastic componentry BMW 7 Series body structure Figure 85: Aluminium content growth 2009 to 2012 Figure 86: Iso-strength curves for 6000 Series alloys Figure 87: Composition of 7000 Series alloys Figure 88: Aluminium front structure Figure 89: Weight reduction studies Figure 90: Federal Mogul’s Advanced Estoval II piston Figure 91: Aluminium steering knuckle Figure 92: Magnesium content per vehicle Figure 93: Specific strength versus specific stiffness for various materials Figure 94: Magnesium demand breakdown Figure 95: Magnesium pricing history Figure 96: Global magnesium production 1998 and 2011 by region Figure 97: Potential for weight saving replacing aluminium with magnesium in the powertrain Figure 98: Typical magnesium die castings Figure 99: Die cast three cylinder engine block in AM-SC1 alloy Figure 100: Stamped magnesium tailgate Figure 101: Thermally formed magnesium alloy sheet trunk lid inner Figure 102: Potential magnesium applications Figure 103: Potential magnesium extrusion use Figure 104: Proportions of different materials Audi R8 Figure 105: Application of titanium-Metal Matrix Composite (MMC) alloys for engine components Figure 106: Connecting rod made of Ti-SB62 split using laser cracking Figure 107: Turbocharger turbine wheel made from ?TiAl Figure 108: Titanium MMC crankshaft using Ti-4A-4V+12% TiCl Figure 109: Comparison between titanium and steel spring showing 50% weight saving Figure 110: VW Golf 4-Motion titanium exhaust Figure 111: Titanium use in the Bugatti Veyron Figure 112: laser sintered titanium components Figure 113: Price elasticity of demand for various engineering materials Figure 114: CFRP cost structure according to SGL Group Figure 115: Resin http://www.prnewswire.com/news-releases/garcinia-cambogia-extract—crucial-data-released-231403591.html Transfer Moulding (RTM) process chain Figure 116: Resin Transfer Moulding (RTM) process schematic Figure 117: McLaren’s MP4-12C featuring a carbon fibre monocoque safety cell Figure 118: CFRP future development roadmap Figure 119: Schematic of the Resin Spray Transfer process Figure 120: Advanced engineering plastics use in the MX-0 design challenge vehicle Figure 121: Density strength relationships for various engineering materials Figure 122: Emerging automotive nanotechnology uses Figure 123: Emerging applications for carbon nanotube based materials technology Figure 124: Nanocomposite interior component Figure 125: Over injection moulding of metal structures Figure 126: A schematic illustrating a holistic interdisciplinary approach to multi-material design and manufacture Figure 127: Optimal continuous fibre reinforcement design for thermoplastic component Figure 128: Optimised component design achieved by intrinsic materials hybridisation Figure 129: Hybrid materials process schematic Figure 130: Wheat Straw/ Polypropylene storage bin and cover liner used in the 2010 Ford Flex Figure 131: ELV regulation implementation Figure 132: Joining technologies used in automotive manufacturing. Figure 133: Laser welded door containing three different steels.
For the original version including any supplementary images or video, visit http://markets.financialcontent.com/stocks/news/read/25792352/Weight_Reduction_in_Automotive_Design_and_Manufacture

Weight Reduction Decreases Atrial Fibrillation, Symptom Severity

17, 2013 Hany S. Abed, B.Pharm., M.B.B.S., of the University of Adelaide and Royal Adelaide Hospital, Adelaide, Australia and colleagues evaluated the effect of a structured weight reduction program on atrial fibrillation symptoms. In the United States, the direct economic cost of atrial fibrillation is estimated at $6 billion annually. Although population aging is regarded as an important contributor, obesity may account for a substantial proportion of the increasing prevalence,” according to background information in the article. Whether weight reduction and cardiometabolic risk factor management can reduce the burden of atrial fibrillation has not been known. The study was conducted between June 2010 and December 2011 among overweight and obese patients with symptomatic atrial fibrillation. Patients underwent a median (midpoint) of 15 months of follow-up.
For the original version including any supplementary images or video, visit http://www.sciencedaily.com/releases/2013/11/131117155729.htm

While some adolescents who took the drug did experience short-term weight loss (six months or less), the effect was modest, and it’s not clear whether such limited weight loss would actually improve their health, the researchers said. [ Lose Weight Smartly: 7 Little-Known Tricks That Shave Pounds ] Given the current evidence, metformin has not been shown to be superior to other weight-loss treatments for kids, such as diet and exercise, the researchers said. “Unfortunately, this drug is not going to be the answer,” said study researcher Marian McDonagh, of Oregon Health & Science University. Overall, the drug does not appear to provide enough weight reduction for children to experience meaningful health benefits in the long term, McDonagh said. Still, it’s possible that certain groups of children, such as those who are very obese, may benefit from taking the drug. A large study is needed to identify these groups, the researchers said.
For the original version including any supplementary images or video, visit http://news.yahoo.com/diabetes-drug-won-39-t-help-obese-kids-220408690.html


Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s